III Международный конкурс
научно-исследовательских и творческих работ учащихся
«СТАРТ В НАУКЕ»
 
     

ХИМИЧЕСКИЙ ИСТОЧНИК ЭЛЕКТРИЧЕСКОГО ТОКА
Харитонов Н.А.
Текст научной работы размещён без изображений и формул.
Полная версия научной работы доступна в формате PDF


Введение

Недавно, на мой день рождения, мне подарили игрушечного робота, работающего на соленой воде. Я был очень удивлён, что робот работает не от обычной батарейки, а от какого-то необычного источника питания.

Заинтересовав этим вопросом родителей, мы стали изучать научную литературу по данному вопросу. Оказалось, что это обычный химический источник электрического тока – более простой аналог широко известных батареек и аккумуляторов.

Вот так мы и выбрали тему для своего исследования. А помогала нам моя учительница.

Объект исследования: химические источники электрического тока.

Предмет исследования: медно-цинковый элемент питания.

Гипотеза исследования: предположим, что мы сможем в домашних условиях собрать химический источник электрического тока с достаточным напряжением, для работы электродвигателя игрушечного робота.

Цель исследования: изготовить элемент питания на основе химического источника электрического тока.

Задачи исследования:

1. Ознакомиться с устройством и процессами, протекающими в химическом источнике электрического тока.

2. Подобрать материалы и собрать химический источник электрического тока в домашних условиях.

3. Применить на практике изготовленный элемент питания.

Методы исследования: исследование проводилось через анализ, наблюдение, сбор информации из книг, журналов, интернет-сайтов, эксперимент.

Практическая значимость: практическая значимость нашей исследовательской работы заключается в том, что любой заинтересованный человек способен собрать в домашних условиях элементы питания, способные вырабатывать достаточное количество электроэнергии для работы устройств, работающих от одной - двух батареек (1,5 - 3 вольта). Изготовление таких элементов питания не требует особых знаний и умений, а материалы для их изготовления есть в каждом доме.

Глава 1. Основная часть

1.1 Что такое электричество?

В повседневной жизни мы часто сталкиваемся с таким понятием как «электричество». Без электричества представить нашу современную жизнь практически невозможно. Скажите, как можно обойтись без освещения и тепла, без электродвигателя и телефона, без компьютера и телевизора? Электричество настолько глубоко проникло в нашу жизнь, что мы порой и не задумываемся, что это за волшебник помогает нам в работе.

Суть электричества сводится к тому, что поток заряженных частиц движется по проводнику (проводник – это вещество, способное проводить электрический ток) в замкнутой цепи от источника тока к потребителю. Двигаясь, поток частиц выполняет определённую работу. Это явление называется «электрический ток». Силу электрического тока можно измерить. Единица измерения силы тока — Ампер, получила своё название в честь французского ученого, который первым исследовал свойства тока. Имя ученого-физика – Андре Ампер.

Открытие электрического тока и других новшеств, связанных с ним, можно отнести к периоду: конец девятнадцатого — начало двадцатого века. Но наблюдали первые электрические явления люди ещё в пятом веке до нашей эры. Они замечали, что потёртый мехом или шерстью кусок янтаря притягивает к себе лёгкие тела, например, пылинки. Древние греки даже научились использовать это явление – для удаления пыли с дорогих одежд. Ещё они заметили, что если сухие волосы расчесать янтарным гребнем, они встают, отталкиваясь друг от друга.

Вернёмся ещё раз к определению электрического тока. Ток – направленное движение заряженных частиц. Если мы имеем дело с металлом, то заряженные частицы – это электроны. Слово «янтарь» по-гречески – это электрон. Таким образом, мы понимаем, что всем нам известное понятие «электричество» имеет древние корни.

Электричество – это наш друг. Оно помогает нам во всём. Утром мы включаем свет, электрический чайник, ставим подогревать пищу в микроволновую печь, пользуемся лифтом, едем в трамвае, разговариваем по сотовому телефону. Трудимся на промышленных предприятиях, в банках и больницах, на полях и в мастерских, учимся в школе, где тепло и светло. И везде «работает» электричество.

Как и многое в нашей жизни, электричество, имеет не только положительную, но и отрицательную сторону. Электрический ток, как волшебника-невидимку, нельзя рассмотреть, учуять его по запаху. Определить наличие или отсутствие тока можно только, используя приборы, измерительную аппаратуру. Первый случай поражения электрическим током со смертельным исходом был описан в 1862 году. Трагедия произошла при непреднамеренном соприкосновении человека с токоведущими частями. В дальнейшем случаев поражения электрическим током произошло немало.

1.2 Что такое химический ток?

Электрическую энергию можно получать различными способами, один из них осуществляется за счет преобразования энергии химических реакций. Впервые химический ток из химических растворов получил Алессандро Вольта. Он использовал соленую воду и металлы — цинк и медь. Таким образом, была собрана первая соляная батарейка, которую назвали «Вольтовым столбом». Потом ее всячески совершенствовали, но изначально все было предельно просто.

Электрический химический ток вырабатывается в результате высвобождения электронов в процессе окислительно-восстановительных реакций. При этом участвуют непосредственно окислитель, восстановитель (в виде электродов), которые помещены в раствор электролита. «Собрать» ток возможно только при замыкании цепи. Движение электронов осуществляется от отрицательно заряженного электрода к положительному.

1.3 Химическое электричество и его источники.

Одной из основных характеристик источников химического тока, или просто батареек, считается возможность вторичного их использования. Выделяют 3 вида таких источников.

Гальванический элемент. Самые обычные батарейки, которые используются в различных электрических приборах: от фонарика до заводных игрушек. После того как в батарейке расходуется запас химических веществ, реакция проходить больше не может и ток не вырабатывается. Такие батарейки просто выбрасывают. Существуют два вида гальванических элементов, вырабатывающих первичный ток — соляные и щелочные. В первом случае в реакции участвуют электроды из марганца и цинка, а в качестве электролита выступает раствор хлорида аммония с различными загустителями. Во втором, электроды погружены в гидроксид калия. Щелочные элементы обладают большей емкостью и способны работать в более экстремальных условиях.

Аккумуляторы. Повсеместно используются источники вторичного тока, которые заряжаются за счет электроэнергии. В этих случаях возможно возобновление окислительно-восстановительной реакции в реагентах. Для большинства современных электроприборов применяют литий — полимерные аккумуляторы, которые дают больший выход энергии.

Топливные элементы. Мало отличаются от обычных батареек, но действуют по совершенно другому механизму. В этом случае система остается открытой, и необходимые химические вещества постоянно поступают из вне. Причем в качестве восстановителя может выступать обычный водород, а окислителя — воздух или кислород в чистом виде. Такие элементы используются в условиях космического пространства для обеспечения электроэнергией космических станций.

Столь несложные конструкции используются в повседневной жизни каждым. Сейчас трудно представить человека, который, собираясь в дорогу, не возьмет с собой около десятка электроприборов, которые работают либо на батарейках, либо за счет аккумулятора. Современные информационные технологии позволяют работать и общаться далеко от источников электроэнергии за счет именно таких долговечных батареек. И сложно представить, что изобретены они были в самом начале XIX века.

1.4 Классификация первичных химических источников электрического тока.

Классификация первичных химических источников электрического тока предусматривает три группы.

Первая группа - простые элементы Лекланше напряжением 1,5 В. Отрицательными полюсами являются дно цинкового стаканчика, положительный латунный колпачок на конце графитового стержня. Они имеют простой солевой электролит, малую емкость и не имеют специального защитного корпуса; стаканчик обернут кабельной бумагой. В процессе работы элемент быстро разрушается, электролит через бумажную оболочку протекает внутрь аппарата.

Вторая группа - конструктивно усовершенствованные элементы Лекланше. Изделия характеризуются плотной набивкой активных элементов, что увеличивает их емкость на 30%, и наличием более эффективного хлоридного электролита. Показателем качества является внешний вид дна. Если дно отрицательного вывода элемента плоское, то его следует отнести к первой или второй группе. Конструкция дна, выполненная в виде штампованной фасонной шайбы, позволяет отнести элемент к третьей группе.

Третья группа - это элементы с хлоридным электролитом и специальными добавками в активные материалы. Их конструкция более герметична, а между цинковым стаканчиком и металлическим или пластмассовым корпусом есть особая прокладка. Элементы третьей труппы бывают двух разновидностей: емкость у первых увеличена на 60-70%, у вторых - почти вдвое. Их срок годности увеличен до 24 мес. Отсутствие единых требований к маркировке элементов на международном уровне не позволяет точно определить их принадлежность к группам.

Цилиндрические алкалиновые элементы, использующие щелочной электролит и металлический стакан, отличаются высокой степенью герметичности и емкостью, в три раза большей, чем у цементов с хлоридным электролитом. Ил срок службы составляет до 5 лет, а масса на 15-20% больше, чем у предыдущих цементов. В маркировку этих изделий дополнительно вносится буква L.

1.5 Вторичные химические источники тока

К вторичным источникам тока относят аккумуляторы. В них в качестве электролита используют раствор серной кислоты (кислотные аккумуляторы с положительным электродом из диоксида свинца и отрицательным - из губчатого свинца) и раствор гидроксида калия (щелочные аккумуляторы систем гидроксида никель-железа, гидроксида никель-кадмия и др.). Их ассортимент подразделяется по числу элементов, емкости, напряжению и по форме.

Номинальная емкость аккумулятора (А*ч) - количество электричества, которое он может отдать при разряде до определенного снижения напряжения. На количество циклов и емкость аккумулятора влияют характер подключения нагрузки (непрерывный, переменный или импульсный), отбираемая мощность (максимальная, средняя, минимальная), режим заряда (нормальный, ускоренный, быстрый/форсированный), постоянный режим подзаряда. Зарядные и разрядные характеристики определяют время стандартного или быстрого заряда и допустимые при этом напряжение и токи. При стандартном времени заряда, емкость аккумулятора больше, чем при быстром, что позволяет обеспечить большие разрядные токи и время работы. При импульсной (повторно-кратковременной) нагрузке, когда время рабочего цикла меньше следующей за ним паузы, величина разрядного тока может быть в несколько раз больше, чем при обычном разряде. Учитывая эти обстоятельства, выпускаются отдельные группы аккумуляторов с одним профилирующим параметром. В конструкции аккумуляторов в виде элементов или батарей предусмотрено наличие встроенного или автономного зарядного устройства.

В бытовой радиоэлектронной аппаратуре широко применяются никель-кадмиевые аккумуляторы. По сравнению с кислотными аккумуляторами щелочные аккумуляторы лучше переносят тряску, короткие замыкания и при равных электрических показателях в три раза легче.

Кислотные аккумуляторы отличаются большой емкостью, способностью подзаряжаться от генератора во время использования, значительным током разряда. В то же время они способны терять свои свойства при хранении и несвоевременной зарядке. Их применяют в автомобилях, например для питания термоэлектрических холодильников. За последние годы конструкция кислотных аккумуляторов существенно изменилась.

Появились необслуживаемые или малообслуживаемые аккумуляторы, обеспечена иммобилизация («неподвижность») электролита, выпушены герметизированные модели, улучшена работа в буферных режимах со сроком службы до 25 лет и увеличением ресурса до 800 циклов. Сформирована единая стандартизация кислотных аккумуляторов.

К преимуществам литиевых аккумуляторов относятся высокое рабочее напряжение 3,6 В, малые габаритные размеры, наличие встроенных микропроцессорных устройств в зарядных системах.

Для удобства потребителей в конструкции химических источников тока (например, алкалические элементы Duracell, Energizer) предусмотрены электрохимические индикаторы, позволяющие оценить величину электрической энергии по интенсивности окраски полосы тестера, появлению надписей или др.

Глава 2. Экспериментальная часть.

Изучив научную литературу по нашей проблеме, мы сделали вывод, что элемент питания нашего робота является хлористосвинцово-магниевым элементом. Это первичный химический источник тока, в котором анодом служит магний, катодом — хлористый свинец в смеси с графитом, а электролитом — водный раствор хлорида натрия, известного нам как поваренная соль. Так как в бытовых условиях мы не имели аналогичных материалов, для создания своего элемента питания мы выбрали медь и цинк. Медь является широкодоступным материалом, а для изготовления цинковой пластины использовали стаканчик щелочной батарейки, предварительно её разобрав.

Оборудование и материалы для проведения эксперимента:

- цинковый стаканчик;

- медный стержень;

- водный раствор хлорида натрия;

- пластичный диэлектрический материал;

- обрезки медных проводов;

- мультиметр;

- игрушка «Робот», со съемным химическим источником электрического тока;

- светодиодный фонарь «Яркий луч», работающий от одной батареи типа AA (LR6) 1,5 вольта.

Ход эксперимента: для начала мы протестировали оригинальный элемент питания робота. Он был собран по прилагающийся инструкции и залит электролитом (раствор натрий хлорида и воды, в соотношении один к пяти). Спустя две минуты нами был произведен замер напряжения на контактах элемента питания (Приложение 1).

Следующим этапом эксперимента стало изготовление медно-цинкового элемента питания, с последующим замером выдаваемого им напряжения (Приложение 2).

Так как напряжение нашего источника питания не было достаточным для работы робота, мы изготовили дополнительный элемент питания и соединили их последовательно, для повышения номинального напряжения.

После этого, мы подключили наши элементы питания к контактам электродвигателя робота с помощью медных проводов и убедились в работоспособности батарей (Приложение 3).

В целях контрольной проверки нашего источника питания, мы подключили светодиодный фонарь. Сравнили яркость свечения фонаря от нашего элемента питания и батареи купленной в магазине (Приложение 4).

В результате эксперимента были сделаны следующие наблюдения:

- оригинальный элемент питания, прилагавшийся к роботу, выдал большее напряжение (около 1,5 вольт), но робот проработал лишь 19 минут;

- собранный нами один химический источник электрического тока показал меньшее напряжение ( 0,8 вольт), но 2 последовательно соединенных элемента (1,6 вольт) проработали в течение 87 минут.

- явных различий в яркости свечения светодиодного фонаря мы не обнаружили.

Научное обоснование: в нашем элементе питания цинковый стаканчик действует как анод (отрицательный электрод), а медный стержень – катод (положительный электрод). Электролитом является водный раствор натрия хлорида (раствор поваренной соли).

Химический источник электрического тока собранный нами в домашних условиях с применением легко доступных материалов доказал свою работоспособность. Элементы питания такого вида могут применяться для устройств и приборов с малым энергопотреблением.

Заключение

При проведении нашего эксперимента мы научились изготавливать, из подручных материалов, химический источник электрического тока в домашних условиях. Сделанные нами элементы питания подтвердили нашу гипотезу. Мы смогли получить достаточное напряжение для работы электродвигателя робота и свечения фонаря, на достаточно большой промежуток времени.

Выводы:

  1. Проанализировав научную литературу, мы выяснили, что первый химический источник электрического тока был изобретен более ста лет назад. Со временем начали применяться другие материалы и вещества, улучшающие свойства элементов питания, но строение их практически не изменилось.

  2. Элемент питания, прилагавшийся к роботу – это хлористосвинцово-магниевый элемент. Так как в бытовых условиях мы не имели аналогичных материалов, для создания своего элемента питания мы выбрали медь и цинк. Медь является широкодоступным материалом, а для изготовления цинковой пластины использовали стаканчик щелочной батарейки, предварительно её разобрав. В качестве электролита использовали водный раствор хлорида натрия – растворив поваренную соль в воде, в соотношении один к пяти (в соответствии с инструкцией к хлористосвинцово-магниевому элементу питания робота).

  3. Собранный нами элемент питания показал прекрасный результат по времени работы. Наша батарейка проработала в четыре раза дольше, чем прилагавшийся к роботу элемент питания, но значительно уступила ему по размерам, весу и удобству использования.

Список использованных источников и литературы
  1. Багоцкий, В.С. Химические источники тока/ В. С. Багоцкий, А. М. Скундин. - Москва: Энергоиздат, 1981. – 360 с.

  2. Жуков, В. А. Моя первая энциклопедия/ В. А. Жуков, Ю.Н.Касаткина, Д.С.Щигель – Москва: АСТ, 2010. – 127 с.

  3. Поваляев, О. А. Набор лабораторного оборудования «Электрические явления»/ О.А.Поваляев, Я.В.Надольская – Москва: ООО «Научные развлечения», 2011.

  4. Мариуш, Л. Обо всём на свете/энциклопедия для детей/ Л. Мариуш, Б. Маевская – Москва: Владис, 2013. – 272 с.

  5. Окслейд, К. Юному эрудиту обо всём/энциклопедия для детей/ К. Окслейд, А. Гэнери – Москва: Махаон, 2005. – 112 с.

  6. http://ru.wikipedia.org/wiki/ Батарейка

  7. http://ru.wikipedia.org/wiki/ Электрический_ток

  8. http://detskiychas.ru/rasskazy/rasskaz_electrichestvo_detyam/

  9. http://www.alto-lab.ru/shkola/ximicheskij-tok/

  10. https://eknigi.org/apparatura/158002-ximicheskie-istochniki-toka.html

  11. http://hron.com.ua/kultura/himiya/himicheskie-istochniki-toka/

  12. http://himiknoginsk.ucoz.ru/index/khimicheskie_istochniki_toka/0-177

  13. http://www.radostmoya.ru/project/akademiya_zanimatelnyh_nauk_himiya/video/?watch=elektrohimiya

  14. https://infourok.ru/prezentaciya_na_temu_himicheskie__istochniki__toka_hit-420032.htm

Приложение 1. Замер напряжения хлористосвинцово-магниевого элемента питания робота.

Рис.1. Состав элемента питания робота.

Рис.2. Замер напряжения.

Приложение 2. Собранный нами химический источник электрического тока. Последовательное соединение элементов питания.

Рис.3. Инструменты и материалы для сборки элементов питания.

Рис.4. Замер напряжения собранного элемента питания.

Рис.5. Замер напряжения последовательно соединенных элементов питания.

Приложение 3. Подключение и проверка работоспособности самодельных батареек на игрушечном роботе.

Рис.6. Проверка работоспособности параллельно соединенных элементов питания на электродвигателе робота.

Приложение 4. Работа светодиодного фонаря от элементов питания собранных нами в домашних условиях.

Рис.7. Работа светодиодного фонаря от элементов питания собранных нами в домашних условиях.

Рис.8. Работа светодиодного фонаря от элементов питания собранных нами в домашних условиях.